Performance of Co-immobilized Yeast and Glucoamylase in a Fluidized Bed Reactor for Fuel Ethanol Production*
نویسندگان
چکیده
The performance of co-immobilized Saccharomyces cerevisiae and glucoamylase was evaluated in a fluidized bed reactor. Soluble starch and yeast extract were used as feed stocks. The biocatalyst performed well and demonstrated no significant loss of activity or physical integrity during 10 weeks of continuous operation. The reactor was easily operated and required no pH control. No operational problems were encountered from bacterial contaminants even though the reactor was operated under non-sterile conditions over the entire course of experiments. Productivites ranged between 25 to 44 g ethanol L-' h-I. The experiments demonstrated that ethanol inhibition and bed loading had significant effects on bed performance. *The submitted manuscript has been authored by a contractor of the US government under contract DE-AC05-960R22464. Accordingly, the US government retains a nonexclusive, royalty-free license to publish or reproduce the published form of the contribution, or allow others to do so, for US government purposes. ** Author to whom all correspondence should be addressed.
منابع مشابه
Production of ethanol from starch by co-immobilized Zymomonas mobilis-glucoamylase in a fluidized-bed reactor.
The production of ethanol from starch was studied in a fluidized-bed reactor (FBR) using co-immobilized Zymomonas mobilis and glucoamylase. The FBR was a glass column of 2.54 cm in diameter and 120 cm in length. The Z. mobilis and glucoamylase were co-immobilized within small uniform beads (1.2-2.5 mm diameter) of kappa-carrageenan. The substrate for ethanol production was a soluble starch. Lig...
متن کاملEnhancement of Hydrogen and Methanol Production using a Double Fluidized-bed Two Membranes Reactor
Nowadays, hydrogen and methanol are attractive prospects because of lower emission compared to the other energy sources and their special application in fuel cell technology, which are now widely regarded as key energy solution for the 21st century. These two chemicals also can be utilized in transportation, distributed heat and power generation and energy storage systems. In this study, a nove...
متن کاملControl of a Fluidized Bed Polyethylene Reactor
In present paper, dynamic behavior and control of a fluidized bed reactor for polyethylene production has been considered. A double active sites model for Ziegler-Natta catalysts is used for simulation of polymerization reaction. Hydrodynamic behavior of the bed is modeled using a two phase model including bubble and emulsion phases in which bubble phase has plug flow pattern with different...
متن کاملApplication in the Ethanol Fermentation of Immobilized Yeast Cells in Matrix of Alginate/Magnetic Nanoparticles, on Chitosan-Magnetite Microparticles and Cellulose-coated Magnetic Nanoparticles
Saccharomyces cerevisiae cells were entrapped in matrix of alginate and magnetic nanoparticles and covalently immobilized on magnetite-containing chitosan and cellulose-coated magnetic nanoparticles. Cellulose-coated magnetic nanoparticles with covalently immobilized thermostable α-amylase and chitosan particles with immobilized glucoamylase were also prepared. The immobilized cells and enzymes...
متن کاملHydrodynamic Studies of Fluidized Bed Chemical Vapor Deposition Reactors to Produce Carbon Nano Tubes via Catalytic Decomposition over Co/Pd MgO
The hydrodynamic studies of fluidized bed reactor has been reported in terms of pressure drop, minimum fluidization velocity and bed volume expansion to contribute to the optimization of the CNTs production parameters in fluidized bed reactors. Minimum fluidization velocity and pressure drop, as the most important parameters, were taken into account for the investigation of the hydrodynamic beh...
متن کامل